NoobAI Notes #
Introduction #
NoobAI is based on the SDXL architecture specifically tailored for anime and furry image generation. Currently I’m using the v-prediction 0.65S
version of the model. This guide will focus mostly on that particular version. It was trained on Danbooru and e621.
Download #
Training Tips #
I’m currently on the sd3
branch so there is nothing special to passing:
--v_parameterization
--zero_terminal_snr
Fitting in 24Gb VRAM #
I used the following settings to fit perfectly inside a 4090.
Click to expand content.
args=(
--debiased_estimation_loss
--max_token_length=225
--keep_tokens=1
--keep_tokens_separator="|||"
--pretrained_model_name_or_path=/home/kade/ComfyUI/models/checkpoints/noobaiXLVpredv06.safetensors
--v_parameterization
--zero_terminal_snr
--log_with=tensorboard
--seed=1728871242
--dataset_repeats=1
--resolution="1024,1024"
--enable_bucket
--bucket_reso_steps=64
--min_bucket_reso=256
--max_bucket_reso=2048
--flip_aug
--shuffle_caption
--cache_latents
--cache_latents_to_disk
--max_data_loader_n_workers=8
--persistent_data_loader_workers
--network_dim=100000
--network_alpha=64
--network_module="lycoris.kohya"
--network_args
"preset=full"
"conv_dim=100000"
"decompose_both=False"
"conv_alpha=64"
"rank_dropout=0"
"module_dropout=0"
"use_tucker=True"
"use_scalar=False"
"rank_dropout_scale=False"
"algo=lokr"
"bypass_mode=False"
"factor=16"
"dora_wd=True"
"train_norm=False"
--network_dropout=0
--optimizer_type=ClybW
--train_batch_size=14
--max_grad_norm=1
--gradient_checkpointing
--lr_warmup_steps=0
--learning_rate=0.0003
--unet_lr=0.0003
--text_encoder_lr=0.00015
--lr_scheduler="cosine"
--lr_scheduler_args="num_cycles=0.375"
--multires_noise_iterations=12
--multires_noise_discount=0.4
--no_half_vae
--sdpa
--mixed_precision="bf16"
--save_model_as="safetensors"
--save_precision="fp16"
--save_every_n_steps=100
--sample_every_n_steps=100
--sample_sampler="euler_a"
--sample_at_first
--caption_extension=".txt"
)
By decreasing the batch size and/or the resolution to 768x or 512x you can fit into any GPU. If you still struggle, use an 8-bit optimizer. Here is the optimizer I prefer currently, there is a guide on how to integrate custom optimizers to sd-scripts here.
Prompting Tips #
Date Tags #
There are two types of date tags: year tags and period tags.
Year Tags #
Use year xxxx format. Example: 2021
.
Period Tags #
For period tags, please refer to the following table:
Year Range | Period Tag |
---|---|
2005-2010 | old |
2011-2014 | early |
2014-2017 | mid |
2018-2020 | recent |
2021-2024 | newest |