Installation and Setup
To get started with LoRA training, you need to set up a proper environment with the necessary tools and dependencies. This guide will walk you through the process.
What is LoRA?
LoRA (Low-Rank Adaptation) is a technique designed to facilitate the fine-tuning of large-scale language and diffusion models efficiently. Instead of overhauling the entire set of model parameters —which can number in the billions— LoRA introduces small, trainable “low-rank” matrices that adapt the model’s behavior. This innovative approach was detailed in the paper “LoRA: Low-Rank Adaptation of Large Language Models” by researchers at Microsoft.
Setting up sd-scripts
First, download kohya_ss’ sd-scripts, which contains the tools you’ll need for LoRA training.
Windows Installation
Follow the instructions in the GitHub repository for Windows-specific setup.
Miniconda Installation (Windows/Linux)
For Miniconda users on Windows or Linux, follow these steps:
# Installing sd-scripts
git clone https://github.com/kohya-ss/sd-scripts
cd sd-scripts
# Creating the conda environment and installing requirements
conda create -n sdscripts python=3.10.14
conda activate sdscripts
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
python -m pip install --use-pep517 --upgrade -r requirements.txt
python -m pip install --use-pep517 lycoris_lora
accelerate config
When running accelerate config
, you’ll be asked several questions. The typical configuration looks like:
- This machine
- No distributed training
- No
- No
- No
- All
- fp16
Additional Packages
You might also want to install additional packages like xformers
or bitsandbytes
for improved performance:
# Installing xformers
python -m pip install --use-pep517 xformers
# Installing bitsandbytes for Windows
python -m pip install --use-pep517 bitsandbytes --index-url=https://jllllll.github.io/bitsandbytes-windows-webui
Preparing a Model
For training, you’ll need a base model. You can use models in various formats:
Using Checkpoint Files
You can use .safetensors
or .ckpt
files directly for training.
Downloading Specific Models
Pony Diffusion SDXL
Pony Diffusion V6 XL is a popular SDXL model fine-tuned for creating anthropomorphic and cartoon-style art.
Download from CivitAI:
- Visit Pony Diffusion V6 XL on CivitAI
- Download the “Pruned Model fp16” version (approximately 6.46 GB)
- You should also download the recommended VAE (approximately 319 MB)
Important Usage Notes:
- Always use clip skip 2 for this model
- The model uses quality boosters in prompts:
score_9, score_8_up, score_7_up, score_6_up, score_5_up, score_4_up
- Special tags:
source_pony
,source_furry
,source_cartoon
,source_anime
- Rating tags:
rating_safe
,rating_questionable
,rating_explicit
NoobAI’s V-Prediction Models
NoobAI V-Prediction models are SDXL models trained with v-prediction, which can produce higher quality results for specific styles.
Download Options:
Using with Diffusers: For models hosted on Hugging Face, you can download them using the Hugging Face CLI:
# Install huggingface_hub if not already installed pip install huggingface_hub # Download NoobAI model huggingface-cli download Laxhar/noobai-XL-Vpred-1.0 --local-dir ./models/noobai-xl
Using Diffusers Format
Many models are available in the Hugging Face Diffusers format, which is more modular and easier to work with for certain applications.
Download a Diffusers Model:
# Example: Download Stable Diffusion XL base model huggingface-cli download stabilityai/stable-diffusion-xl-base-1.0 --local-dir ./models/sdxl-base
Using Models with sd-scripts
Using Checkpoint Files in Training Configs
When training with sd-scripts, you specify the model path in your training configuration:
# Example training command using a .safetensors checkpoint
accelerate launch --num_cpu_threads_per_process=2 "./train_network.py" \
--pretrained_model_name_or_path="./models/ponyDiffusionV6XL.safetensors" \
--v2 --v_parameterization \ # Use for v-prediction models
--network_module="networks.lora" \
--network_dim=32 \
--network_alpha=16 \
--train_batch_size=1 \
--learning_rate=1e-4 \
--max_train_epochs=5 \
--output_dir="./output/my_lora" \
--save_model_as="safetensors" \
--dataset_config="./configs/dataset_config.toml" \
--mixed_precision="fp16" \
--clip_skip=2 # Important for Pony Diffusion
Training with Diffusers Format Models
sd-scripts supports training with models in Diffusers format:
# Example training command using a Diffusers model
accelerate launch --num_cpu_threads_per_process=2 "./train_network.py" \
--pretrained_model_name_or_path="./models/sdxl-base" \ # Path to local Diffusers folder
--network_module="networks.lora" \
--network_dim=32 \
--network_alpha=16 \
--train_batch_size=1 \
--learning_rate=1e-4 \
--max_train_epochs=5 \
--output_dir="./output/my_lora" \
--save_model_as="safetensors" \
--dataset_config="./configs/dataset_config.toml" \
--mixed_precision="fp16"
Alternatively, you can load Hugging Face models directly:
# Example loading directly from Hugging Face
accelerate launch --num_cpu_threads_per_process=2 "./train_network.py" \
--pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0" \
--network_module="networks.lora" \
--network_dim=32 \
--network_alpha=16 \
--train_batch_size=1 \
--learning_rate=1e-4 \
--max_train_epochs=5 \
--output_dir="./output/my_lora" \
--save_model_as="safetensors" \
--dataset_config="./configs/dataset_config.toml" \
--mixed_precision="fp16" \
--use_safetensors
Special Considerations for V-Prediction Models
When training with v-prediction models like NoobAI:
- Add the
--v_parameterization
flag to your training command - You may need lower learning rates (e.g., 5e-5 to 1e-4)
# Example for NoobAI v-prediction model
accelerate launch --num_cpu_threads_per_process=2 "./train_network.py" \
--pretrained_model_name_or_path="Laxhar/noobai-XL-Vpred-1.0" \
--v_parameterization \
--zero_terminal_snr \
--network_module="networks.lora" \
--network_dim=32 \
--network_alpha=16 \
--train_batch_size=1 \
--learning_rate=8e-5 \
--max_train_epochs=5 \
--output_dir="./output/my_noobai_lora" \
--save_model_as="safetensors" \
--dataset_config="./configs/dataset_config.toml" \
--mixed_precision="fp16"
Next Steps
Once your environment is set up and you have a base model ready, you can proceed to the Training Parameters section to learn how to configure and start your LoRA training.